THE IMPACT OF LOW FERTILITY ON AGEING IN THE REPUBLIC OF MACEDONIA

International Young Researcher's Conference "The impacts and challenges of demographic change" 22 and 23 September,2016,Paris(France) GORAN MILADINOV Ph.D student at Faculty of Economics, "Ss.Cyril and Methodius" University in Skopje

Research question and, Main research goal

- Whether the economic conditions and opportunities within the rapidly ageing societies can lead to greater optimism or pessimism among the young regarding their own fertility plans?
- To examine if the tempo of period fertility rates and the quantum of late fertility affect the fertility ageing and the ageing process of population in general in respect of some economic conditions.

Goals

- Describe the impact of low fertility on ageing
- Explore the fertility trends and ageing process of fertility in the Republic of Macedonia
- Measure ageing and economic effects
- Predict the probability of increasing proportion of 65+

Data and Methods

- State Statistical Office of the Republic of Macedonia: Vital Statistics and Labor Force Survey (1996-2015)
- Basic economic indicators of the National Bank of the Republic of Macedonia (1996-2015)
- Time series of nine variables
- Exploratory factor analysis method, ML-Factor method and ML-Binary Logit method

ML-Factor method

 The factor model assumes that for period *i*, the observable multivariate p-vector X_i is generated by:

$X_i - \mu = LF_i + \epsilon_i$

Macedonia, ML Factor model

Factor Method: Maximum Likelihood Date: 06/22/16 Time: 21:46 Covariance Analysis: Ordinary Correlation Sample: 1996 2015 Included observations: 20 Number of factors: Minimum average partial Prior communalities: Squared multiple correlation

Convergence achieved after 16 iterations

	Unrotated Loadings				
	F1	F2	Communality	Uniqueness	
WAGES	-0.238984	0.248602	0.118916	0.881084	_
MAFB	0.991737	0.120360	0.998028	0.001972	
HIGHERMID	0.933086	0.254262	0.935298	0.064703	
GDPG	0.036865	0.427486	0.184103	0.815908	
FUN	-0.826018	0.558788	0.994551	0.005449	
FE	0.962536	-0.199115	0.966121	0.033880	
F30	0.992532	0.096113	0.994358	0.005642	
CMR	0.903600	0.235010	0.871722	0.128279	
AI	0.981178	0.139346	0.982127	0.017873	_
					_
Factor	Variance	Cumulative	Difference	Proportion	Cumulative
F1	6.285766	6.285766	5.526307	0.892202	0.892202
F2	0.759459	7.045224		0.107798	1.000000
Total	7.045224	7.045224		1.000000	
	Model	Independence	Saturated		
Discrepancy	2.263414	20.34343	0.000000		
Chi-square statistic	43.00487	386.5251			
Chi-square prob.	0.0013	0.0000			
Bartlett chi-square	31.31056	308.5420			
Bartlett probability	0.0373	0.0000			
Parameters	26	9	45		
Degrees-of-freedom	19	36			

Goodness-of-fit Statistics and Indices

Goodness-of-fit Summary Factor: FACTOR01 Date: 06/23/16 Time: 20:32

	Model	Independence	Saturated
Parameters	26	9	45
Degrees-of-freedom	19	36	
Parsimony ratio	0.527778	1.000000	
Absolute Fit Indices			
	Model	Independence	Saturated
Discrepancy	2.263414	20.34343	0.000000
Chi-square statistic	43.00487	386.5251	
Chi-square probability	0.0013	0.0000	
Bartlett chi-square statistic	31.31056	308.5420	
Bartlett probability	0.0373	0.0000	
Root mean sq. resid. (RMSR)	0.037082	0.685817	0.000000
Akaike criterion	0.250243	15.72626	0.000000
Schwarz criterion	-0.695702	13.93394	0.000000
Hannan-Quinn criterion	0.065585	15.37638	0.000000
Expected cross-validation (ECVI)	5.000256	21.29080	4.736842
Generalized fit index (GFI)	0.665923	0.209962	1.000000
Adjusted GFI	0.208764	-0.871142	
Non-centrality parameter	24.00487	350.5251	
Gamma Hat	0.441810	0.051417	
McDonald Noncentralilty	0.531683	9.86E-05	
Root MSE approximation	0.257867	0.715866	
Incremental Fit Indices			
	Model		
Bollen Relative (RFI)	0.789191		
Bentler-Bonnet Normed (NFI)	0.888740		
Tucker-Lewis Non-Normed (N	0.870244		
Bollen Incremental (IFI)	0.934685		
Bentler Comparative (CFI)	0.931517		

Eigenvalue view

Kaiser's Measure of Sampling Adequacy and partial correlation

Kaiser's Measure of Sampling Adequacy Factor: FACTOR01 Date: 06/23/16 Time: 21:39

	MSA
WAGES	0.376167
MAFB	0.791660
HIGHERMID	0.922600
GDPG	0.417369
FUN	0.712938
FE	0.756606
F30	0.754344
CMR	0.946792
AI	0.849275
Kaiser's MSA	0.800036

Partial Correlation:

	WAGES	MAFB	HIGHERMID	GDPG	FUN	FE	F30	CMR	AI
WAGES	1.000000								
MAFB	0.404192	1.000000							
HIGHERMID	-0.067435	-0.172261	1.000000						
GDPG	-0.071453	0.147013	0.143258	1.000000					
FUN	-0.089098	0.413770	-0.011967	-0.165162	1.000000				
FE	-0.135092	0.379472	-0.242729	-0.293577	-0.875329	1.000000			
F30	-0.519953	0.905960	0.239802	-0.226328	-0.471700	-0.396878	1.000000		
CMR	0.259756	0.144168	0.290592	0.058646	0.010210	0.018974	-0.164244	1.000000	
AI	0.224018	-0.023791	0.382342	0.223755	0.436555	0.582565	0.306470	0.229959	1.000000

Rotation method:Oblique Quartimax
Rotation Method: Oblique Quartimax
Factor: FACTOR01
Date: 06/23/16 Time: 22:09
Initial loadings: Orthogonal Random (reps=25,
rng=kn, seed=1911323643)
Results obtained from random draw 19 of 25
Convergence achieved after 23 iterations

Rotated loadings: L * inv(T)'					
	F1	F2			
WAGES	0.034899	0.365028			
MAFB	0.943731	-0.086718			
HIGHERMID	1.021173	0.093226			
GDPG	0.434793	0.521160			
FUN	-0.163299	0.889196			
FE	0.617415	-0.475805			
F30	0.921487	-0.116964			
CMR	0.978303	0.076374			
AI	0.952835	-0.060670			

Factor score summary

Factor Score Summary Factor: FACTOR01 Date: 06/24/16 Time: 01:29 Exact scoring coefficients Method: Regression (based on rotated loadings) Standardize observables using moments from estimation Sample: 1996 2015 Included observations: 20

Factor Coefficients:

	AGING	ECONOMIC	
WAGES	0.000450	0.002851	
MAFB	0.709745	0.149847	
HIGHERMID	0.026117	0.024575	
GDPG	0.001435	0.004837	
FUN	0.105894	1.080045	
FE	0.015437	-0.078294	
F30	0.236895	0.012278	
CMR	0.012526	0.011190	
AI	0.080478	0.026908	
Indeterminancy Indices:			
	Multiple-R	R-squared	Minimum Corr.
AGING	0.999215	0.998431	0.996861
ECONOMIC	0.996599	0.993209	0.986418

Factor score summary continue

Validity Coefficients:

	Validity
AGING	0.999215
ECONOMIC	0.996599

Univocality: (Rows=Factors; Columns=Factor scores) AGING ECONOMIC AGING ---- -0.613246 ECONOMIC -0.611641 ----

Estimated Scores Correlation:

	AGING	ECONOMIC
AGING	1.000000	
ECONOMIC	-0.613728	1.000000

Factor Correlation:

	AGING	ECONOMIC
AGING	1.000000	
ECONOMIC	-0.610223	1.000000

Biplot of factor scores and Rotated loadings

Biplot of Factor Scores and Rotated Loadings

AGING

Logit model estimation

Dependent Variable: P65

Method: ML - Binary Logit (Quadratic hill climbing / EViews legacy)

Date: 06/23/16 Time: 15:27

Sample: 1996 2015

Included observations: 20

Convergence achieved after 6 iterations

Covariance matrix computed using second derivatives

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C TFR	47.04744 -30.67305	25.57958 16.85571	1.839258 -1.819743	0.0659 0.0688
McFadden R-squared S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. LR statistic Prob(LR statistic)	0.440341 0.512989 0.975852 1.075425 0.995290 12.20884 0.000476	Mean depend S.E. of regres Sum squared Log likelihood Restr. log like Avg. log likelih	lent var sion I resid d lihood nood	0.500000 0.370641 2.472748 -7.758522 -13.86294 -0.387926
Obs with Dep=0 Obs with Dep=1	10 10	Total obs		20

ML-Binary Logit method

According to the estimated Logit model we get that the index *s* is equal to:

$$s = 47.047 - 30.674 * tfr$$
,

whereby the probability of increasing the proportion of 65+ is shown below:

$$prob(proportion \ 65 + = 1) = 1 - F(-s)$$

$$F(s) = e^s/(1+e^s)$$

Probability of increasing the proportion 65+

TFR_PLOT

Conclusions

- TFR in 2015 is lowest in the Southwest region (1.19) of the country and highest TFR is observed in the Skopje region (1.79).
- In 2015, the age group of 25-29 is the leading one, with 34.6% of live births were belonged to the mothers aged 25-29, the age group 30-34 takes the second place in the share of live births with 28.0% of births.
- The proportion of fertility realized at age 30+ doubled from 19.13% in 1994 to 39.97% in 2015 in the Republic of Macedonia.
- The mean age at first birth was 23.4 years in early 1990s, it has increased to 27 years in 2015 in Republic of Macedonia
- Ageing process of fertility has received an significance and the population of Republic of Macedonia unavoidably will begin to accelerate its ageing process

Conclusions

- Medium negative correlation between FE30 and WAGES, FUN, FE, confirms their opposite linkage and therefore the key influence of the economic variables on ageing process of fertility.
- Medium positive correlation was revealed between MAFB and WAGES, FUN and FE. Also medium and positive correlation was found between AI and HIGHERMID and FUN and high positive correlation between AI and FE.
- The negative correlation between both factors (AGEING and ECONOMIC factors) means that the decrease of the effect of the economic factor will result in increase of the ageing process and that the decrease of the ageing process will lead to increase of the economic effect in the country.
- As the rate of TFR reduced to lowest values(1.45 to 1.65) it is more likely to increase the probability of increasing the proportion of 65+
 - Research question interpretation.

References

Adsera, A. (2011), Where Are the Babies? Labor Market Conditions and Fertility in Europe, *Eur J Population* (2011), Vol.27, pp.1–32.

Attané, I. & Barbiéri, M.(2009). The demography of east and southeast Asia from the 1950 to the 2000s, A summary of changes and a Statistical assessment, *Population-E*, 64 (1), pp.7-146

Basten, S.,Sobotka,T. & Zeman, K.(2014), 'Future fertility in low fertility countries', in Lutz,W., Butz, W.P.& Samir, K.C. (Ed.), *World Population and Human Capital in the Twenty-First Century*,Oxford University Press,Oxford, chapter 3.

Beets, G. (2007). An introduction: late fertility and determinants of postponement behaviour, Genus, 64 (3-4), pp.17-31.

Breschi, M. & Fornasin, A. (2004). Local fertility policy. Genus, 60 (1), pp.233-256.

Coleman, D.A.(2005). Population prospects and problems in Europe, Genus, 61(3-4), pp.413-464

Fraboni, R.& Rosina, A.(2006). Age at first union and fatherhood in a very low fertility context. Genus, 62 (3-4), pp. 87-109

Giorgi, P.& Mamolo, M. (2007). Decomposition of late fertility dynamics across Italian regions during the period 1955-2000. Genus, 63(1-2), pp.65-91

Goldstein, J.R. & Cassidy, T. (2014). A Cohort Model of Fertility Postponement, Demography, 51 (5), pp.1797–1819.

Preston, S.H., Himes, C. & Eggers, M. (1989). Demographic conditions responsible for population aging. Demography, 1989, 26 (4), pp.691-704

 Tabutin, D. & Schoumaker, B. (2005). The Demography of the Arab world and the Middle East from 1950s to the 2000s. A Survey of Changes and a Statistical Assessment. *Population-E* 2005, 60 (5-6), pp.505-616

Thank You for your attention!

Questions? Comments?

miladinovg@aol.com